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Objectives

Obtain average velocity from a knowledge of velocity profile,
and average temperature from a knowledge of temperature
profile in internal flow

Have a visual understanding of different flow regions in
internal flow, and calculate hydrodynamic and thermal entry
lengths

Analyze heating and cooling of a fluid flowing in a tube under
constant surface temperature and constant surface heat flux
conditions, and work with the logarithmic mean temperature
difference

Obtain analytic relations for the velocity profile, pressure
drop, friction factor, and Nusselt number in fully developed
laminar flow

Determine the friction factor and Nusselt number in fully
developed turbulent flow using empirical relations, and
calculate the heat transfer rate



INTRODUCTION

Liquid or gas flow through pipes or ducts is commonly used in heating and

cooling applications and fluid distribution networks.

The fluid in such applications is usually forced to flow by a fan or pump through

a flow section.

Although the theory of fluid flow is reasonably well understood, theoretical
solutions are obtained only for a few simple cases such as fully developed

laminar flow in a circular pipe.

Therefore, we must rely on experimental results and empirical relations for most
fluid flow problems rather than closed-form analytical solutions.
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Circular pipe duct

Water - Air~”

50 atm [.2 atm
Circular pipes can withstand large pressure differences
between the inside and the outside without undergoing any
significant distortion, but noncircular pipes cannot.
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For a fixed
surface area,
the circular tube
gives the most
heat transfer for
the least
pressure drop.



The fluid velocity in a pipe changes
from zero at the wall because of the
no-slip condition to a maximum at the
pipe center.

In fluid flow, it is convenient to work
with an average velocity V4, which
remains constant in incompressible
flow when the cross-sectional area of
the pipe is constant.

The average velocity in heating and
cooling applications may change
somewhat because of changes in
density with temperature.

But, in practice, we evaluate the fluid
properties at some average
temperature and treat them as
constants.
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FIGURE 8-2

Average velocity V., is defined as the
average speed through a cross section.
For fully developed laminar pipe flow,
Ve 18 half of the maximum velocity.
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AVERAGE VELOCITY AND TEMPERATURE

The value of the average (mean) velocity | , : B
: : m=pV, A, = | pulrydA,
V., at some streamwise cross-section : J,
The average velocity for incompressible I
flow in a circular pipe of radius R —— -
i R E‘Tﬁ min
J pu(r) dA, J pu(r)2mr dr . ———
ng _ A, _ 0 . _ 3,, J u(r)r dr (a) Actual
T pPA. pTR” R” ],
In fluid flow, it is convenient to work with an T,
average or mean temperature T, which
remains constant at a cross section. The mean (b Tdealized
temperature T, changes in the flow direction
whenever the fluid is heated or cooled. FIGURE 8-3
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Laminar and Turbulent Flow in Tubes

Flow in a tube can be laminar or turbulent, depending on the flow
conditions.

Fluid flow is streamlined and thus laminar at low velocities, but turns
turbulent as the velocity is increased beyond a critical value.

Transition from laminar to turbulent flow does not occur suddenly;
rather, it occurs over some range of velocity where the flow fluctuates
between laminar and turbulent flows before it becomes fully turbulent.

Most pipe flows encountered in practice are turbulent.

Laminar flow is encountered when highly viscous fluids such as oils
flow in small diameter tubes or narrow passages.

Transition from laminar to turbulent flow depends on the Reynolds
number as well as the degree of disturbance of the flow by surface
roughness, pipe vibrations, and the fluctuations in the flow.

The flow in a pipe is laminar for Re < 2300, fully turbulent for Re >
10,000, and transitional in between.



Reynolds number for flow in a circular tube
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For flow through noncircular tubes, the
Reynolds number as well as the Nusselt 4A,

number, and the friction factor are Dy, = p
based on the hydraulic diameter D,,
| 4A.  4mD*/4
Circular tubes: D, = P = D =D
Lumi{ur TL]['l*alulent
Under most practical
Dye lrace ‘ conditions, the flow in a
Vavg pipe is laminar for Re <
2300, fully turbulent for
H Re > 10,000, and

I transitional in between.
f Dye injection

FIGURE 8-5

[n the transitional flow region of the
flow switches between laminar and
turbulent somewhat randomly.
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The hydraulic diameter D, = 44 /p is
defined such that it reduces to
ordinary diameter for circular tubes.
When there is a free surface, such as
in open-channel flow, the wetted
perimeter includes only the walls in
contact with the fluid.



THE ENTRANCE REGION

Velocity boundary layer (boundary layer): The region of the flow in which the effects of the
viscous shearing forces caused by fluid viscosity are felt.

The hypothetical boundary surface divides the flow in a pipe into two regions:
Boundary layer region: The viscous effects and the velocity changes are significant.

Irrotational (core) flow region: The frictional effects are negligible and the velocity remains
essentially constant in the radial direction.

Hydrodynamic entrance region: The region from the pipe inlet to the point at which the
velocity profile is fully developed.

Hydrodynamic entry length L,: The length of this region.

Hydrodynamically fully developed region: The region beyond the entrance region in which
the velocity profile is fully developed and remains unchanged.

3 i ; Irrotational (core) Velocity boundary Developing velocity Fully developed
Flow in the entranC.e region I1s flow region layer profile velocity profile
called hydrodynamically y > ; . y y /
developing flow since this is —>1 | ——1 | — —> 1 —>1 /
. ) = > L gy | —~_.1
the region where the velocity ‘ — ﬁ__:” e S s e B e /
. r - P _— >
profile develops. — >— T o — — ., -
FIGURE 8-6 > > L > >
The development of the velocity BN _ _
y «— Hydrodynamic entrance region > =

boundary layer in a pipe. (The developed

average velocity profile 1s parabolic in

laminar flow, as shown. but much flatter 8
or fuller in turbulent flow.)

Hydrodynamically fully developed region



The fluid properties in internal flow are usually evaluated at the bulk mean fluid
temperature, which is the arithmetic average of the mean temperatures at the
inlet and the exit: T, = (T, + T, .)/2

Thermal entrance region: The region of flow over which the thermal boundary layer
develops and reaches the tube center.

Thermal entry length: The length of this region.

Thermally developing flow: Flow in the thermal entrance region. This is the region
where the temperature profile develops.

Thermally fully developed region: The region beyond the thermal entrance region in
which the dimensionless temperature profile remains unchanged.

Fully developed flow: The region in which the flow is both hydrodynamically and
thermally developed.
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T, ,.ff f T, o Temperature profile
e =———"—T—=
——

development of ——— | %

the thermal - - ———— % ) ) o
boundary layer ——— ——

inatube. — "

Thermal Thermally

entrance region fully developed region 9



Hydrodynamically fully developed:

du(r, x)

— U= u(r)

ox
Thermally fully developed:

9 T(x)— T(r, x) — 0
ax | T(x) — T, (x) |

Surface heat flux

‘f?_s - ‘f‘-r.x'(- T_s o Tm) - ﬂ h
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Variation of the friction
factor and the convection
heat transfer coefficient
in the flow direction for
flow in a tube (Pr>1).
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In the thermally fully developed region of a
tube, the local convection coefficient is
constant (does not vary with x).

Therefore, both the friction (which is related
to wall shear stress) and convection
coefficients remain constant in the fully
developed region of a tube.

The pressure drop and heat flux are higher in
the entrance regions of a tube, and the effect
of the entrance region is always to increase
the average friction factor and heat transfer
coefficient for the entire tube.
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Entry L' laminar = ””::’ RE {}

Len gthS L laminar ~ 0.05Re PrD = Pr L.".'. laminar

] 1’

i, turbulent “i, turbulent

~ 10D

The Nusselt numbers and thus h values are much higher in the entrance region.

The Nusselt number reaches a constant value at a distance of less than 10

diameters, and thus the flow can be assumed to be fully developed for x > 10D.

The Nusselt numbers for
the uniform surface
temperature and uniform
surface heat flux
conditions are identical
in the fully developed
regions, and nearly
identical in the entrance
regions.

Variation of local Nusselt
number along a tube in
turbulent flow for both
uniform surface
temperature and uniform
surface heat flux.
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GENERAL THERMAL ANALYSIS

Rate of heat transfer
Q =mc, (T, —T) (W)

Surface heat flux
g, = h, (T, — 1,,) (W/l‘l‘lj)

h, the local heat transfer coefficient

Energy balance:
0= H}('p( r,-T)
The heat transfer to a fluid flowing in a

tube is equal to the increase in the
energy of the fluid.

The thermal conditions at the surface
can be approximated to be

constant surface temperature (T,= const)
constant surface heat flux (g, = const)

The constant surface temperature
condition is realized when a phase
change process such as boiling or
condensation occurs at the outer surface
of a tube.

The constant surface heat flux condition
IS realized when the tube is subjected to
radiation or electric resistance heating
uniformly from all directions.

We may have either T, = constant or
g, = constant at the surface of a tube,
but not both.

12



Constant Surface Heat Flux (g, = constant)

Rate of heat transfer:

0 =¢gA, = (T, —T) (W)

Mean fluid temperature
at the tube exit:

r =1 4+ &%
e = 1i T Fff{‘:,}

Surface temperature:

g =hT,—T,) — r—m+%

Variation of the tube
surface and the mean fluid
temperatures along the
tube for the case of
constant surface heat flux.
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dl,, _ 4p 50 = h(T,—T,)dA

i1 {_}J d?_;” — (}:ﬁg{'ﬁ_}fir} — I = ”1;1(_';} = constant {
T’” I— —I Tn.! T dTm
dr,, dI, - -
dx  dx n}cpi'-m I‘ I‘ m (T, +dT,,)
| ‘ ‘ | |
o (T, — T) 1 (HTS aT) I B
ox (T =7,) " 7 11, "ax) " '
T _ dT; dx
ax  dx Energy interactions for a
differential control volume
oT dIy, dT, qp - in a tube.
— = = = — = constant
dx  dx dx  mc,
T(r) T(r)
Circular tube; /
+ bbby Ty oy oy Te !
o _ at, — dr,, — 24, = constant ) )
dx dx  dx  pV,.,R o

I T

The shape of the temperature profile remains — x
unchanged in the fully developed region of a
tube subjected to constant surface heat flux.



Constant Surface Temperature (T, = constant)
Rate of heat transfer to or from a fluid flowing in a tube
Q = hAAT,,, = hA(T, = T,),, (W)

Two suitable ways of expressing AT,
« arithmetic mean temperature difference
* logarithmic mean temperature difference

Arithmetic mean temperature difference

AT, + AT, (T.—T) + (T.— T, T.+T,
Q‘Tm-'g = "ﬁ‘Tmn - 7 — ( | : 7 ( | : - T.'; o o - T~“ N T‘r’

s s’

Bulk mean fluid temperature: T, = (T, + T,)/2

By using arithmetic mean temperature difference, we assume that the mean
fluid temperature varies linearly along the tube, which is hardly ever the case

when T, = constant.
This simple approximation often gives acceptable results, but not always.

Therefore, we need a better way to evaluate AT,

15



me,dT, = NI, — T,

)dA T4

TS = constant I

dA, = pdx dT, = —d(T,—T,) g =
AT, — T,) hp

= ——dx
I, — 1, ne,

Integrating from x = 0 (tube inlet,
T,= T)tox=L (tubeexit, T, =T,)
T,—T,  hA,

I,—T. g, 0 L+_.E

& i

T,=T,— (T, — T) exp(—hA,/mc,) % %{

Ny

(T

m

approaches T, asymptotically)

In

5 Q — h{Ts _ Tm}dA L= constant
r¥j The variation of the mean fluid
L 51 T, temperature along the tube for the
. | case of constant temperature.
me,T, I" I-‘ m e, (T, +dT,) P
I I
! a Energy interactions for

¥

a differential control
dx volume in a tube.
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Q = hAAT, AT, = i~ 1 _ AL — Al ::Z?nr;eerz?ure
o Inl(T, — TONT, = T)l  In(AT,/AT) gittarence

NTU: Number of transfer units. A T =100°C
measure of the effectiveness of the / 3
heat transfer systems. g{; fc.
For NTU =5, T, = T, and the limit for m— TR
heat transfer is reached.
A small value of NTU indicates more \4 P
opportunities for heat transfer. ’
AT, is an exact representation of the NTU=hA /me,  1,.°C
average temperature difference 0.01 0.8
between the fluid and the surface. 8:?3 %;z
When AT, differs from AT, by no more 0.50 51.5
than 40 percent, the error in using the Lo o2
arithmetic mean temperature 10.00 100.0

difference is less than 1 percent.

An NTU greater than 5 indicates that

the fluid flowing in a tube will reach the

surface temperature at the exit
regardless of the inlet temperature. 17



EXAMPLE 8-1 Heating of Water in a Tube by Steam

Water enters a £.5-cm-internal-diameter thin copper tube of a heat exchanger
at 15°C at a rate of 0.3 kg/s, and is heated by steam condensing outside at
120°C. If the average heat transfer coefficient is 800 W/m? - C, determine the
length of the tube required in order to heat the water to 115°C (Fig. 8-16).

Steam
/ T, =120°C
115°C
Water 1 ~"'|
15°C D=25cm
0.3 kgfs i

FIGURE 8-16

Schematic for Example §-1.
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SOLUTION water is heated by steam in a circular tube. The tube length
required to heat the water to a specified temperature is to be determined.

Assumptions 1 Steady operating conditions exist. 2 Fluid properties are con-
stant. 3 The convection heat transfer coefficient is constant. 4 The conduction
resistance of copper tube is negligible so that the inner surface temperature of
the tube is equal to the condensation temperature of steam.

Properties The specific heat of water at the bulk mean temperature of
(15 + 115)/2 = 65°C is 4187 J/kg - °C. The heat of condensation of steam at
120°C is 2203 kJ/kg (Table A-9).

Analysis Knowing the inlet and exit temperatures of water, the rate of heat
transfer is determined to be

Q =mCy(T, — T;) = (0.3 kg/s)(4.187 kl/kg - "C)(115°C — 15°C) = 125.6 kW
The logarithmic mean temperature difference is

AT, =T, — T, = 120°C — 115°C = 5°C
AT, =T, — T, = 120°C — 15°C = 105°C
AT, —AT;  5-105

AT, = = — 32.85°C
" In(AT,/AT) In(5/105)
The heat transfer surface area is
c ) 2
Q@ =hAAT, —— A= < 120 kW = 4.78 m*

~ hAT, (0.8 kWi/m? - °C)(32.85°C)

Then the required length of tube becomes

A, AT m?

S8 > L =0D = 0025 m)

=6l m

19



LAMINAR FLOW IN TUBES

RardrP)y — Qardr P)yyg + Crardx7), — Qurdx 7),44, = 0

dP  d(rr)
. Prvax — Py N (rt)r4ar — r7), _  Taking the limit as dr, dx — 0 gives " 5 7 g0~
dx dr
2aR dx T,
Substituting 7 = —u(du/dr) and taking g = constant T
nR*P > |- nR*(P + dP)
Trtdr Mmod( du dP L
A—— —— | r— = — __1
P, P, ix rdr\ dr dx '
— {IP 2"‘-“_.'
T, —_— = —
dx R —
1, H
|
I I
A l_\u{r] AR =
dr ) > Ir P
AT T N
L e e
Hacke Hmax
Farce balance:
RR*P — AR*(P + dP) - 2nR dx 7., =0
FIGURE 8-17 Simplifving:
R R T .l ‘-'!' Ll N w "- "'!' n W . E — Eq’"
Free-body diagram of a ring-shaped  FIGURE 8-18 =" R

differential fluid element of radius r, Free-body diagram of a fluid disk

thickness dr, and length dx oriented
coaxially with a horizontal tube in
fully developed laminar flow.

element of radius R and length dx in
fully developed laminar flow in a
horizontal tube.
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1 [dP
wry=—|— |+ CiInr+ C,
4\ dx
The velocity profile u(r) 1s obtained by applying the boundary conditions
duldr = 0 at r = 0 (because of symmetry about the centerline) and « = 0 at
r = R (the no-slip condition at the tube wall). We get

Theretfore, the velocity profile in fully developed laminar flow in a tube is
parabolic with a maximum at the centerline and a minimum (zero) at the tube
wall. Also, the axial velocity u is positive for any r, and thus the axial pressure
gradient dP/dx must be negative (i.e., pressure must decrease in the flow direc-
tion because of viscous effects).

R- (dP r
ur)y=—\|— 1 — —
4 \ dx R
o2 (R -2 (* R (dP r2 R (dP
Ve =, | wlrrdr= | ——=rdr= —1—
R? R? 4\ dx R? S\ dx

0 0
A r The maximum velocity occurs oy
w(r) =2Vl 1 — — - — N Umax = < Vavg
: R2 at the centerline, r = O:
Velocity profile The average velocity in fully developed laminar

pipe flow is one-half of the maximum velocity. ’1



A quantity of interest in the analysis of pipe flow is the pressure drop AP since
it is directly related to the power requirements of the fan or pump to maintain flow.

dP P, — P, 8LV,  32uLV,,
I L Laminar flow: AP=P, — P, = 2 = 2 Pressure
L p‘.-'ﬁ.ﬂ Drop
Pressure loss: AP, = f———
D 2

where pV?,,,/2 is the dynamic pressure and fis the Darcy friction factor,

87, Inlaminar flow, the friction factor is a function of =~ * ¥
J= 2 the Reynolds number only and is independent of < APy -
PYavg the roughness of the pipe surface.
9 pIp Vao |P
. . 641 64
Circular tube, laminar: = — = < L >
pDV,. Re | 2
h L PV;
7 2 . avg
AP, . V.. head loss Pressure loss: AP, :f5 5
hj_ — = f—
¥ ' Yo )
g D 2 FIGURE 8-19 Head loss: , =2PE — ¢ L Vi
Pressure losses are The relation for pressure loss (and L™ "pg D 2g
commonly expressed head loss) is one of the most general
in terms of the equivalent relations in fluid mechanics, and it is
fluid column height, called valid for laminar or turbulent flows,
| 22

circular or noncircular tubes. and

the head loss h,. _ _ ,
pipes with smooth or rough surfaces.



The head loss h, represents the additional height that the fluid

needs to be raised by a pump in order to overcome the frictional h, =
losses in the pipe. The head loss is caused by viscosity, and it is P8
directly related to the wall shear stress.

The required pumping power to

overcome the pressure loss: W VAPL — VF’Q}?.L = mghy

pump, L

AP,

L 4 f\"r
_fB 20

( P] o P:}RE {Pl _ P: }[).— .AP [)._ The average

U= VA, =T PR S il P)mD" AP 7D Poiseuille’s
e Sl | 281 128l law
For a specified flow rate, the pressure drop and Woump = 16 hp
thus the required pumping power .is prqportional " Viee
to the length of the pipe and the viscosity of the )

fluid, but it is inversely proportional to the fourth

power of the radius (or diameter) of the pipe. Wyump = 1 hip
A
FIGURE 8-20
: . . 2D — V. .. M4
The pumping power requirement for a e
laminar flow piping system can be \

reduced by a factor of 16 by doubling
the tube diameter.
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Temperature Profile and the Nusselt Number
m{'}?r\c o "ﬂ(‘.pTx +ax T Qr o Qr+ ar =0
m = puA, = pu(2mrdr)

I, +dv Tx ] Qr+dr o Qr

X

peptt dx T 2arrdx dr

AL
dx 2pc,mrdx Or

0 o a:r) 9 ( a:r)
= Y ey = 2 2,94
ar  or ( k2mrdx ar 2mkdx ar (_} ar
a = kipc,
LT _ad (0T
ox  rdr\  or
The rate of net energy transfer to the The differential volume element
control volume by mass flow is equal used in the derivation of energy
to the net rate of heat conduction in balance relation.

the radial direction. 24



Constant Surface Heat Flux

oT _ dI; _dI, 24

ax  dx dx PVavaCpR

= = = constant

(1 - 5) = ()

Y

r=% (2o ycrsc
_,‘{R f 4R: 'l" 9

Applying the boundary conditions
oT/ox = 0 at r = 0 (because of
symmetry) and T=T,atr =R

— (j.S'R 3 P f 4
I=1=7 [4 R2 45:4)
[19:R

Tm - T.s' o ﬂ k

g, = W(T,— T,

i

Circular tube, laminar (g, = constant):

hD |
Nu =——=4.36
}!{
Therefore, for fully developed laminar flow in
a circular tube subjected to constant surface
heat flux, the Nusselt number is a constant.

There is no dependence on the Reynolds or
the Prandtl numbers.
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Constant Surface Temperature

. hD
Circular tube, laminar (T, = constant): Nu = P 3.66
!

The thermal conductivity k for use in the Nu relations should be evaluated
at the bulk mean fluid temperature.

For laminar flow, the effect of surface roughness on the friction factor and
the heat transfer coefficient is negligible.

Tﬂ'f““”““"“ Laminar Flow in Noncircular
— o W Tubes
f= Re u(r) Nusselt number relations are given in
""""""""""" D - ~ 777 Table 8-1 for fully developed laminar
Nu = 3.66 J flow in tubes of various cross sections.
The Reynolds and Nusselt numbers
Fully developed for flow in these tubes are based on
laminar flow the hydraulic diameter D, = 4A./p,
In laminar flow in a tube with constant Once the Nusselt number is available
surface temperature, both the friction the convection heat transfer coefficient

factor and the heat transfer coefficient s determined from h = KNu/D;..
remain constant in the fully developed
region.

26



TABLE 8-1

Musselt number and friction factor for fully developed laminar flow in tubes of
various cross sections (D, = 4A./p, Re = V,,Dp /v, and Nu = hD,/k)

alb Nusselt Number Friction Factor
Tube Geometry or 4° T. = Const. g. = Const. f
Circle — 3.66 4.36 64.00/Re
Rectangle alb
1 2.98 3.61 56.92/Re
2 3.39 4.12 62.20/Re
3 3.96 4.79 68.36/Re
i 4 4.44 5.33 72.92/Re
6 5.14 6.05 78.80/Re
a 8 5.60 6.49 82.32/Re
e - 7.54 8.24 96.00/Re
Ellipse ab
1 3.66 4.36 64.00/Re
A 2 3.74 4.56 67.28/Re
4 3.79 4.88 72.96/Re
8 3.72 5.09 76.60/Re
a—> 16 3.65 5.18 78.16/Re
Isosceles Triangle i
10° 1.61 2.45 50.80/Re
30° 2.26 2.91 62.28/Re
& 60° 2.47 3.11 63.32/Re
P‘ 90° 2.34 2.98 52.60/Re
L~ \ 120° 2.00 2.68 50.96/Re




Developing Laminar Flow in the Entrance Region

For a circular tube of length L subjected to constant surface temperature,
the average Nusselt number for the thermal entrance region:

0.065 (D/L) Re Pr
| + 0.04[(D/L) Re Pr]*?

The average Nusselt number is larger at the entrance region, and it
approaches asymptotically to the fully developed value of 3.66 as L — .

Entry region, laminar: Nu = 3.66 +

When the difference between the surface and the fluid temperatures is large,
it may be necessary to account for the variation of viscosity with temperature:

Re PrD\'? /u,\*'4 All properties are evaluated at the bulk
Nu = 1. 6(—) ( })

7 m mean fluid temperature, except for p, which
5

IS evaluated at the surface temperature.

The average Nusselt number for the thermal entrance region of
flow between isothermal parallel plates of length L is

0.03 (D, /L) Re Pr
| + 0.016[(D,/L) Re Pr]*?

Re = 2800 28

Entry region, laminar-: Nu = 7.54 +




FIGURE 8-23

Leo Graetz (1856-1941). a German
physicist, was born at Breslau (then in
Germany, now called Wroclaw and in
Poland). His scientific work was first
concerned with the fields of heat
conduction, radiation, friction and
elasticity. He was one of the first to
investigate the propagation of
electromagnetic energy. The
dimensionless Graetz number

describing heat transfer 1s named after

him.

20
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FIGURE 8-24

Local Nusselt numbers in the entry
and fully developed regions for
laminar flow in a circular tube for
hydrodynamically developed and
thermally developing flow.
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= EXAMPLE 8-2 Pressure Drop in a Pipe

w.aterat 40°F (p = 62.42 Ibm/ft? and p. = 3.74 Ibm/ft - h) is flowing ina 0.15-

|n -diameter 30-ft-long pipe steadily at an average velocity of 3 ft/s (Fig. 8-22).
= Determme the pressure drop and the pumping power requirement to overcome
m this pressure drop.

) — 3 ft's |0.15 in.

[+ 30 fi .
FIGURE 8-22

Schematic for Example §—2.
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SOLUTION The average flow velocity in a pipe is given. The pressure drop and
the required pumping power are to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The entrance effects
are negligible, and thus the flow is fully developed. 3 The pipe involves no com-
ponents such as bends, valves, and connectors.

Properties The density and dynamic viscosity of water are given to be p =
62.42 lbm/ft3 and p = 3.74 Ibm/ft - h = 0.00104 Ibm/ft - s.

Analysis  First we need to determine the flow regime. The Reynolds number is

Re

_ pVaD (6242 Ibm/f)(3 f/s)(0.12/12 1) (3600 s
T 3.74 Ibm/ft - h

T )=IEI33

which is less than 2300. Therefore, the flow is laminar. Then the friction factor
and the pressure drop become

_64_ 64 _
J=Re ~ 1803 ~ 0033
L pVi 30ft  (62.42 Ibm/ft?)(3 fi/s)? ( 1 Ibf )
AP = FEEm _ 0355
53 01212 1 2 32.174 Ibm - fUs?

= 930 Ibf/ft? = 6.46 psi

The volume flow rate and the pumping power requirements are

V="%,A, =V, (wD%4) = (3 f/s)[w(0.12/12 ft)}/4] = 0.000236 ft¥/s

1 W
0.737 1bf - f/s

Woump = VAP = (0.000236 ft’/s)(930 lhffﬂlj(

) = 0L30W

Therefore, mechanical power input in the amount of 0.30 W is needed to over-
come the frictional losses in the flow due to viscosity.
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: EXAMPLE 8-3 Flow of 01l in a Pipeline through a Lake

: Consider the flow of oil at 20°C in a 30-cm-diameter pipeline at an average
g Velocity of 2 m/is (Fig. 8-23). A 200-m-long section of the pipeline passes

m through icy waters of a lake at 0°C. Measurements indicate that the surface
m femperature of the pipe is very nearly 0°C. Disregarding the thermal resistance
® of the pipe material, determine (a) the temperature of the oil when the pipe

® leaves the lake, (b) the rate of heat transfer from the oil, and (c) the pumping
: power required to overcome the pressure losses and to maintain the flow of the
u Ol in the pipe.

20°C il f T
‘ 2 = Nee = =/ ‘
| 200 m |
FIGURE 8-23

Schematic for Example 8-3. -




™ SOLUTION Qil flows in a pipeline that passes through icy waters of a lake at
0°C. The exit temperature of the oil, the rate of heat loss, and the pumping
power needed to overcome pressure losses are o be determined.

Assumptions 1 Steady operating conditions exist. 2 The surface temperature of
the pipe is very nearly O°C. 3 The thermal resistance of the pipe is negligible.
4 The inner surfaces of the pipeline are smooth. 3 The flow is hydrodynamically
developed when the pipeline reaches the lake.

Properties We do not know the exit temperature of the oil, and thus we cannot
determine the bulk mean temperature, which is the temperature at which the
properties of oil are to be evaluated. The mean temperature of the oil at the
inlet is 20°C, and we expect this temperature to drop somewhat as a result
of heat loss to the icy waters of the lake. We evaluate the properties of the oil
at the inlet temperature, but we will repeat the calculations, if necessary,
using properties at the evaluated bulk mean temperature. At 20°C we read
(Table A-14)

p = 888 kg/m’ v =901 x 107% mi/s
k=0145W/m - °C C, = 1880 J/kg - °C
Pr = 10400

Analysis (&) The Reynolds number is

VD,  (Qm/s)03m)

R - —
*TTV T 901 % 10 °m¥s

which is less than the critical Reynolds number of 2300. Therefore, the flow is
laminar, and the thermal entry length in this case is roughly

L;=0.05Re Pr D = 0.05 X 666 x 10400 ¥ (0.3 m) = 104,000 m

which is much greater than the total length of the pipe. This is typical of fluids
with high Prandtl numbers. Therefore, we assume thermally developing flow
and determine the Nusselt number from
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Ny D _ 5o, 0065 (DIL)RePr
T T T T 0.04 [(DIL) Re PrP?

0.065(0.3/200) * 666 X 10400
| + 0.04](0.3/200) x 666 > 10,400]23

= 3.66 +

=373

Mote that this Nusselt number is considerably higher than the fully developed
value of 3.66. Then,

Nu = M{BT.E} = 18.0 W/m? - °C

.’1=£
D 0.3 m

Also,

A, = pL = wDL = w(0.3 m)(200 m) = 188.5 m?
= pAVy = (888 kg/m*)[1m(0.3 m)P)(2 m/s) = 125.5 kg/s

Mext we determine the exit temperature of oil from

T, =T, — (T, — T)) exp (—hA, /i1 Cp)
(18.0 W/m? - °C)(188.5 mﬂ
(125.5 kg/s)(1880 J/kg - °C)

= 0°C — [(0 — 20)°C] exp [—
= 19.71°C

Thus, the mean temperature of oil drops by a mere 0.25°C as it crosses the
lake. This makes the bulk mean oil temperature 19.86°C, which is practically
identical to the inlet temperature of 20°C. Therefore, we do not need fo re-
evaluate the properties.
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(D) The logarithmic mean temperature difference and the rate of heat loss from
the oil are

-7, 20-19.71
T,—T, . 0—1971

np—F =570

O = hA, AT, = (18.0 W/m? - °C)(188.5 m2)(— 19.85°C) = —6.74 x 10*

—19.85°C

ﬂTm =

Therefore, the oil will lose heat at a rate of &67.4 KW as it flows through the pipe
in the icy waters of the lake. Note that AT, is identical to the arithmetic mean
temperature in this case, since AT, = AT..

(c) The laminar flow of cil is hydrodynamically developed. Therefore, the friction
factor can be determined from

_64_ 64 _
f= Re 666 Liled

Then the pressure drop in the pipe and the required pumping power become

L pVE 200 m (888 kg/m?)(2 m/s)? . ,
ﬁP—fD 3 = (.0961 03 m 3 = 1.14 ¥ 10" N/m
) . (125.5 kg/s)(1.14 x 10° N/m?)
Woump = mat_ g E = 16.1 kW
P 888 kg/m
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TURBULENT FLOW IN TUBES

Smooth tubes: f=1(0.790In Re — 1.64)~2 )00 < Re <5 X 10°
Nu = 0.125 f RePr' Chilton—Colburn First Petukhov equation
analogy

f=0.184 Re 2

0.7 <Pr= 160

Colburn
Re > 10,000

equation

Nu = 0.023 Re"® Prl/3

Nu = 0.023 Re"® Pr” |pittus—Boelter equation
n = 0.4 tor heating and 0.3 for cooling

When the variation in properties is large due to a large temperature difference

0.14
PN 0.8p.13[ M 0.7 = Pr = 17,600
Nu = 0.027 Re™h (Mg Re = 10,000

All properties are evaluated at T, except p, which is evaluated at T..
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( 1/8) Re Pr /N = v Second
Ny — J/8) (0,3 = Pr = 2000 ) Sotik o

1.07 + 12.7(f18)*° (Pr** — 1) \10* <Re <5 X 109 0 2vion

Nu — ( f/8)(Re — 1000) Pr {f"n,ﬁ = Pr = 2000 \ Gnielinski
T+ 1270 f18)%3 (PR — 1) 3 X 10° < Re <5 X 10° relation

L;‘f.f”f{_{‘H?(‘-JF‘{T}{.V* Tx = constant: Nu=4.8 + 0.0156 RC{}_HS pl.ir,u;

L;‘q’”;‘d metals, {_jh = constant: Nu =63+ 00167 Re®8 Pl{"m

(0.004 < Pr < 0.01) 10* < Re < 10°

The relations above are not very sensitive to the thermal conditions at the
tube surfaces and can be used for both T, = constant and g, = constant.
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Rough Surfaces

The friction factor in fully developed turbulent pipe flow depends on the
Reynolds number and the relative roughness /D, which is the ratio of the
mean height of roughness of the pipe to the pipe diameter.

| ‘e/D 2.5
= 20 “--‘:i( e —) (turbulent flow) COI€Prook

\/ Re\Vf equation

. 1

Moody chart is given in the appendix as Fig. A—20.

It presents the Darcy friction factor for pipe flow as a function of the Reynolds
number and /D over a wide range.

| 6.9 </D\ 117 An approximate explicit
== —1.8 IDE{RE + ( ) } relation for f was

vV | given by S. E. Haaland

3.7

In turbulent flow, wall roughness increases the heat transfer coefficient h
by a factor of 2 or more. The convection heat transfer coefficient for rough
tubes can be calculated approximately from Gnielinski relation or Chilton—
Colburn analogy by using the friction factor determined from the Moody

chart or the Colebrook equation. -



TABLE 8-2

Standard sizes for Schedule

40 steel pipes

Relative Friction
Roughness, Factor,
elD I
0.0# 0.0119
000001 0.0119
0.0001 0.0134
0.0005 0.0172
0.001 0.0199
0.005 0.0305
0.01 0.0380
0.05 0.0716

#gmooth surface. All values are for Re = 108,

and are calculated from Eq. 8-74.

FIGURE 8-27

The friction factor 1s minimum for a
smooth pipe and increases with

roughness.

Nominal Actual Inside
Size, In Diameter, in
Ya 0.269
¥ 0.364
7 0.493
Yo 0.622
Y 0.824
1 1.049
11 1.610
2 2.067
2% 2.469
3 3.068
5 5.047

10 10.02

TABLE 8-3

Equivalent roughness values for new

commercial pipes’

Roughness,

Material ft

£
mim

Glass, plastic O (smooth)

Concrete 0.003-0.03 0.9-9

Wood stave 0.0016
Rubber,
smoothed 0.0000332

Copper or

brass tubing 0.000005
Cast iron 0.00085
Galvanized

iron 0.0005

Wrought iron  0.00015
Stainless steel 0.000007
Commercial

steel 0.00015

0.5

0.01

0.0015
0.26

0.15
0.046
0.002

0.045

“The uncertainty in these values can be as much
as =60 percent.
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Developing Turbulent Flow in the Entrance Region

The entry lengths for turbulent flow are typically short, often just 10 tube
diameters long, and thus the Nusselt number determined for fully developed
turbulent flow can be used approximately for the entire tube.

This simple approach gives reasonable results for pressure drop and heat
transfer for long tubes and conservative results for short ones.

Correlations for the friction and heat transfer coefficients for the entrance regions
are available in the literature for better accuracy.

Turbulent Flow in Noncircular Tubes

Pressure drop and heat transfer

characteristics of turbulent flow in tubes are 7 " —
dominated by the very thin viscous sublayer o < S —
next to the wall surface, and the shape of the - O B!
core region is not of much significance. »

Viscous sublayer

The turbulent flow relations given above for
circular tubes can also be used for In turbulent flow, the velocity
noncircular tubes with reasonable accuracy  Profile is nearly a straight line in
by replacing the diameter D in the evaluation the core region, and any

of the Reynolds number by the hydraulic significant velocity gradients
diameter D,, = 4A./p. occur in the viscous sublayer. 40



Flow through Tube Annulus
_4A(~_4w(D§—D%)f4_D
P wD,+D) °

_ '!‘Tf' D.I!;' 1 N . h..r; Dh
= I anc u, = A

Nu,

The hydraulic

_________ .h—___
D, diameter of annulus @ LDI' D,

For laminar flow, the convection coefficients for the
inner and the outer surfaces are determined from

For fully developed turbulent flow, h; and h,
are approximately equal to each other, and the
tube annulus can be treated as a noncircular
duct with a hydraulic diameter of D, = D, — D..

The Nusselt number can be determined from a
suitable turbulent flow relation such as the
Gnielinski equation. To improve the accuracy,
Nusselt number can be multiplied by the
following correction factors when one of the
tube walls is adiabatic and heat transfer is
through the other wall:

HR —0.16
F, = 0.86 [H’J (outer wall adiabatic)
D —0.16

F,= 0865 (inner wall adiabatic)

i/

. — —

Tube surfaces are often
roughened, corrugated, or
finned in order to enhance
convection heat transfer.

TABLE 8-4

Nusselt number for fully developed
laminar flow in an annulus with
one surface isothermal and the
other adiabatic (Kays and Perkins,
1972)

Di/D, Nu, Nu,

0 — 3.66
0.05 17.46  4.06
0.10 11.56  4.11

0.25 7.37 423
0.50 574 443
1.00 486 4.86
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Heat Transfer Enhancement

Tubes with rough surfaces have much
higher heat transfer coefficients than
tubes with smooth surfaces.

Heat transfer in turbulent flow in a tube
has been increased by as much as 400
percent by roughening the surface.
Roughening the surface, of course,
also increases the friction factor and
thus the power requirement for the
pump or the fan.

The convection heat transfer
coefficient can also be increased by
inducing pulsating flow by pulse
generators, by inducing swirl by
Inserting a twisted tape into the tube,
or by inducing secondary flows by
coiling the tube.

Roughness

(b) Roughened surface

FIGURE 8-30

Tube surfaces are often roughened,
corrugated, or finned in order to
enhance convection heat transfer.



= EXAMPLE 84  Pressure Drop in a Water Pipe

: Water at 60°F (p = 62.36 Ibm/ft* and p = 2.713 Ibm/ft - h) is flowing steadily

 ina 2-in.-diameter horizontal pipe made of stainless steel at a rate of 0.2 ft/s
m (Fig. 8-28). Determine the pressure drop and the required pumping power in-

m put for flow through a 200-ft-long section of the pipe.

4

0.2 ft’/s 7 ~ \III
waler = }
| 200 ft———
FIGURE 8-28

Schematic for Example 8—4.
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SOLUTION The flow rate through a specified water pipe is given. The pressure
drop and the pumping power requirements are to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The entrance effects
are negligible, and thus the flow is fully developed. 3 The pipe involves no com-
ponents such as bends, valves, and connectors. 4 The piping section involves
no work devices such as a pump or a turbine.

Properties The density and dynamic viscosity of water are given by p = 62.36
Ibm/ft? and p = 2.713 Ibm/ft - h = 0.0007536 Ibm/ft - s, respectively.
Analysis First we calculate the mean velocity and the Reynolds number to
determine the flow regime:

.V Vv 0.2 ft’fs
=Y _ - = 0.17 fi/
A, wD¥4 w212 )44 :
_p¥VD (6236 Ibm/fY)(9.17 fUs)(2/12 1) (3600 s
Re=—4—= 2713 Ibm/ft - h in )~ 12640

which is greater than 10,000. Therefore, the flow is turbulent. The relative
roughness of the pipe is

0.000007 ft

eD ==k

= (L.000042

The friction factor corresponding to this relative roughness and the Reynolds
number can simply be determined from the Moody chart. To avoid the reading
error, we determine it from the Colebrook equation:

e/D 2.51 ] I ('I].'I]EI}DAIE " 2.51 ]

-2, + — = -2
mﬂg(ﬂ Re /T, - % Emﬂg_ 3.7 126,400 +/T

Using an equation solver or an iterative scheme, the friction factor is deter-
mined to be f= 0.0174. Then the pressure drop and the required power input
become

I _
VI
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[ p¥? 200 ft (62.36 Ibm/ft*)(9.17 f/s)? ( | Ibf )

AP =Ip7 =0 2 3221bm - fus?

= 1700 Ibfifit* = 11.8 psi

| W
0.737 Ibf - fi/s

Woume = VAP = (0.2 ft’3/s)( 1700 Ibﬁ’l’ti}(

pump ] =461 W

Therefore, power input in the amount of 461 W is needed to overcome the fric-
tional losses in the pipe.
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m EHMFIE 8-5 Heating of Water by Resistance Heaters in a Tube

Water is to be heated from 15°C to 65°C as it flows through a 3-cm-internal-
dlameter 5-m-long tube (Fig. 8-29). The tube is equipped with an electric re-
— mstance heater that provides uniform heating throughout the surface of the
m tube. The outer surface of the heater is well insulated, so that in steady opera-
™ tjon all the heat generated in the heater is transferred to the water in the tube.
™ |f the system is to provide hot water at a rate of 10 L/min, determine the power
ratlng of the resistance heater. Also, estimate the inner surface temperature of
® the pipe at the exit.

4, = constant

REREERERERR

- Water T 1‘1, a
|5°C D=3 em 65°C

[ O 0 O O R O

[ 5m |

FIGURE 8-29

Schematic for Example 8-3.
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SOLUTION 'Water is to be heated in a tube equipped with an electric resis-
tance heater on its surface. The power rating of the heater and the inner surface
temperature are to be determined.

Assumptions 1 Steady flow conditions exist. 2 The surface heat flux is uniform.
3 The inner surfaces of the tube are smooth.

Properties The properties of water at the bulk mean temperature of T, =
(T, + T2 = (15 + 65)2 = 40°C are (Table A-9).

p = 992.1 kg/m’ C,=41791/kg - °C
k= 0631 W/m - °C Pr = 4.32
v = wip = 0.658 X 1075 mi/s

Analysis The cross sectional and heat transfer surface areas are

A, = 1mD? = Lu(0.03 m)? = 7.069 X 107* m?
A; = pL = DL = w(0.03 m)(5 m) = 0.471 m’

The volume flow rate of water is given as V¥ = 10 L/min = 0.01 m¥min. Then
the mass flow rate becomes

i = pV = (992.1 kg/m*)(0.01 m¥/min) = 9.921 kg/min = 0.1654 kg/s

To heat the water at this mass flow rate from 15°C to 65°C, heat must be sup-
plied to the water at a rate of

Q = mCy(T, — T)
= (0.1654 kg/s}4.179 kJ/kg - "C)}65 — 15)°C
= 34.6 klfs = 346 kW
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All of this energy must come from the resistance heater. Therefore, the power
rating of the heater must be 34.6 KW.

The surface temperature T, of the tube at any location can be determined
from

g, =WT,—T,) — T5=TM+%

where his the heat transfer coefficient and T, is the mean temperature of the
fluid at that location. The surface heat flux is constant in this case, and its
value can be determined from

0 346kW
== _23OKW _ 73 46 KW/m?
9= 4 = 0471 m? o

To determine the heat transfer coefficient, we first need to find the mean ve-
locity of water and the Reynolds number:

. _V _ _0.010 m¥min .
— — — — "j
Vo A~ 7.069 X 10 m? 14.15 m/min = 0.236 m/s

~ VaD  (0.236 m/5)(0.03 m)
Y 0658 % 1075 mYs

Re = 10,760

which is greater than 10,000. Therefore, the flow is turbulent and the entry
length is roughly

L,=L =10D =10 %003 =03m
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which is much shorter than the total length of the pipe. Therefore, we can as-
sume fully developed turbulent flow in the entire pipe and determine the Nus-
selt number from

hD

Nu === = 0.023 Re"® Pr™* = 0.023(10,760)° (4.34)"* = 69.5
Then,
_ k. _ 0631 Wim - °C _ -
h =5 Nu 08 (69.5) = 1462 W/m? - °C

and the surface temperature of the pipe at the exit becomes

Ej'-'_.,- ?345[’ W;"ml _ _
T =T +3 _ gsoc + — 115°C
= Im T 1462 W/m2 - °C

49



: EXAMPLE 8-6 Heat Loss from the Ducts of a Heating System

: Hot air at atmospheric pressure and 80°C enters an 8-m-long uninsulated
m Square duct of cross section 0.2 m X 0.2 m that passes through the attic of a
= house at a rate of 0.15 m¥s (Fig. 8-30). The duct is observed to be nearly

m isothermal at 60°C. Determine the exit temperature of the air and the rate of

® heat loss from the duct to the attic space.
|

_—T.=60°C

(.2 m
Air o
| atm+—=
R0°C
\ 02m

FIGURE 8-30
Schematic for Example 8—6.

&m
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SOLUTION Heat loss from uninsulated square ducts of a heating system in
the attic is considered. The exit temperature and the rate of heat loss are o be
determined.

Assumptions 1 Steady operating conditions exist. 2 The inner surfaces of the
duct are smooth. 3 Air is an ideal gas.

Propeities  We do not know the exit temperature of the air in the duct, and thus
we cannot determine the bulk mean temperature of air, which is the tempera-
fure at which the properties are to be determined. The temperature of air at the
inlet is 80°C and we expect this temperature to drop somewhat as a result of
heat loss through the duct whose surface is at 60°C. At 80°C and 1 atm we
read (Table A-15)

p = 0.9994 kg/m’ C, = 1008 J/kg - °C
k=002953W/m - "C Pr=0.7154
v =2.097 % 107° m¥/s

Analysis The characteristic length (which is the hydraulic diameter), the mean
velocity, and the Reynolds number in this case are

44, 442
D,,—p —E—H—D.Em
.V 0.15ms
V =—=———=375m/
A (02m) :

_ VaDy (375 m/s)(0.2 m)
VY 2097 ¥ 107 m¥s

Re = 35,765
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which is greater than 10,000. Therefore, the flow is turbulent and the entry
lengths in this case are roughly

Ly=L=10D=10x02m=2m

which is much shorter than the total length of the duct. Therefore, we can
assume fully developed turbulent flow in the entire duct and determine the
Nusselt number from

hD
Nu = Tﬁ = 0.023 Re™® P13 = 0.023(35,765)™ (0.7154)" = 91 4
Then,
_ k. _0.02953 Wim - °C B 3.
h_D,,H"_ 07 m (91.4) = 13.5 W/m C

A, =pL=4al =4 % (0.2 m)(8 m) = 6.4 m?
i = pV = (1.009 kg/m*)0.15 m¥s) = 0.151 kg/s

Mext, we determine the exit temperature of air from

T,=T,— (T, — T)exp(—hA,/mC,)
(13.5 W/m? - “C)6.4 m?)

= 60°C — [(60 — B0)°C]exp | — (0.151 kg/s)( 1008 J/kg - °C)

= 71.3C

Then the logarithmic mean temperature difference and the rate of heat loss
from the air become

Ii—T. B0 — 71.3 .
Mo= T T 0713 O
T =T, 60 — 80

O = hA, AT, = (13.5 W/im? - °C)(6.4 m?)(—15.2°C) = — 1313 W
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